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Storage capacity of attractor neural networks with depressing synapses
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We compute the capacity of a binary neural network with dynamic depressing synapses to store and retrieve
an infinite number of patterns. We use a biologically motivated model of synaptic depression and a standard
mean-field approach. We find that atT50 the critical storage capacity decreases with the degree of the
depression. We confirm the validity of our main mean-field results with numerical simulations.
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I. INTRODUCTION

One of the interesting questions that arises in neural
work modeling is how biological processes in real neuron
the cellular and subcellular level influence the network
havior and its ability to process information.

In most neural network studies so far, the synaptic c
nection between neurons has been modeled as a con
strength@1,2#, possibly subject to learning on a slow tim
scale. However, recently it has been reported that syna
strength is a dynamic quantity that strongly depends on
presynaptic neural activity@3,4#. Synaptic strength can de
crease~depression! or increase~facilitation!, depending on
the type of synapse@3#. After learning, most synapses a
depressing with a typical time constant of 10–20 ms. T
synaptic strength recovers on the order of seconds. The
lecular mechanism underlying this dynamic is the deplet
of the neurotransmitter’s vesicles due to presynaptic ne
firing and their restoration on a larger time scale@4#. These
synapses are found throughout the cortex as well as in
Hippocampus@5–15#.

There have been various studies of the effect of dyna
synapses on the information transfer in feed-forward ne
network behavior, such as filtering of redundant noise@6#,
extraction of temporal patterns for speech recognition@7#,
and robust coincidence detection@8#.

Only a few studies, for instance see Refs.@9,10#, have
focused on the role of dynamical synapses in recurrent ne
networks, and in particular on associative memory@1#. In
such networks, long-term storage of the memory pattern
produced by adjusting the strength of the synapses accor
to the Hebb rule. With such static synapses the network
namics has fixed points~attractors! corresponding to the
stored memory patterns@11#. The question one may ask
how the retrieval properties and the fixed points of t
Hopfield network are affected by dynamical synapses.
cently, it has been shown numerically that synaptic dep
sion allows for fast switching among stored patterns by
ducing the stability of such attractors. These results
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observed not only in networks of binary neurons, but also
more biologically plausible integrate-and-fire neurons@10#.
These numerical results were confirmed analytically for
nary neurons by a mean-field analysis in the limit of a sm
number of stored patterns,a[P/N→0.

In this paper, we compute the storage capacity of an
tractor neural network with dynamical depressing synap
when we store an infinite number of patterns,P5aN. In the
study presented in Ref.@9# the particular situation of strong
depression and fast recovery has been analyzed. Howev
is known that a large variety of values for the depression
recovery time constants are encountered in the brain. In
paper, we show that only the ratio of these time consta
affects the storage capacity and compute the dependenc
the storage capacity on this ratio. Our main conclusion, s
ported by both analytical computations and Monte Ca
simulations is that the critical storage capacity for the
trieval of patterns as fixed points is strongly reduced by
degree of depression of the synapses, even at temper
T50.

II. THE MODEL

Our starting point consists of a network ofN binary neu-
ronssi51, 0. Each neuron follows a probabilistic dynami
which is given by

Prob$si~ t11!51%5 1
2 @11tanh$2bhi~ t !%#, ~1!

wherehi5( jv i j xjsj2u i is the local field associated to neu
ron i, u i is the threshold for neuroni to fire, andb51/T
represents the level of noise due to the stochastic syna
activity. The first term ofhi is the total synaptic current ar
riving at neuroni with v i j representing the static synapt
connection strength or weights between neuronsj and i and
xj the depression variable@10#. The static weights are de
fined according to the standard covariance rule, that is,

v i j 5
1

N f~12 f ! (
n51

P

~j i
n2 f !~j j

n2 f !, ~2!

wherejn’s (n51, . . . ,P) areP memorized patterns that ar
stored in the network. The depression variablexj depends on

y
a,
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time and models the dynamic properties of the synapse@10#,
and is a simplification of the original model by Ref.@4# in the
limit of t in50,

xi~ t11!5xi~ t !1
12xi~ t !

t rec
2Uxi~ t !si~ t ! ; i 51, . . . ,N.

~3!

For t rec50 we recover the static synapse (xi51).
In the following, we shall consider random patterns w

average activitŷ j i
m&5 f 51/2. In order to recover the stan

dard static Hopfield model withu i50 in the$11, 21% code,
we have to choose the neuron threshold in the$1,0% code
equal to

u i~j!5
1

2N f~12 f ! (j
(
m

~j i
m2 f !~j j

m2 f !. ~4!

For each stored patternn, we define the average ofxj for
the active and inactive units in the pattern, that isx1

n

[(1/N f )( j PAct(n)xj , and x2
n [@1/N(12 f )#( j ¹Act(n)xj .
re

n

06191
These sums extend over the units that are active or inac
in the patternn, respectively. In a similar way, we define th
mean activity of the network for the units that are active a
inactive in patternn, that is m1

n [(1/N f )( j PAct(n)sj and
m2

n [@1/N(12 f )#( j ¹Act(n)sj . Then, the overlap of the net
work activity with a stored patternn becomes

mn[
1

N f~12 f ! (i
~j i

n2 f !si5m1
n 2m2

n , ;n, ~5!

and the corresponding local fields

hi5 (
n51

P

~j i
n2 f !@x1

n m1
n 2x2

n m2
n #. ~6!

III. MEAN-FIELD ANALYSIS

From Eqs.~1! and ~3! and within a standard mean-fiel
approximation, the network dynamics is driven by t
coupled map
x1
n ~ t11!5x1

n ~ t !1
12x1

n ~ t !

t rec
2Ux1

n ~ t !m1
n ~ t !,

x2
n ~ t11!5x2

n ~ t !1
12x2

n ~ t !

t rec
2Ux2

n ~ t !m2
n ~ t !,

m1
n ~ t11!5

1

N (
i PAct~n!

F11tanhH bS @x1
n ~ t !m1

n ~ t !2x2
n ~ t !m2

n ~ t !#1 (
mÞn

~2j i
m21!@x1

m ~ t !m1
m ~ t !2x2

m ~ t !m2
m ~ t !# D J G , ~7!

m2
n ~ t11!5

1

N (
i ¹Act~n!

F12tanhH bS @x1
n ~ t !m1

n ~ t !2x2
n ~ t !m2

n ~ t !#2 (
mÞn

~2j i
m21!@x1

m ~ t !m1
m ~ t !2x2

m ~ t !m2
m ~ t !# D J G ,

mn~ t11!5
1

N (
i

~2j i
n21!F11tanhH b(

m
~2j i

m21!@x1
m ~ t !m1

m ~ t !2x2
m ~ t !m2

m ~ t !#J G .
n

a

The last three equations of~7! are not independent and a
related by Eq.~5!. In the thermodynamic limit (N→`), the
fixed point equations for the coupled dynamics of neuro
and synapses~7! are given as

x1
n 5

1

gm1
n 11

,

x2
n 5

1

gm2
n 11

,

m1
n 5

1

2 F11
2

N (
i PAct~n!

tanhH bS @x1
n m1

n 2x2
n m2

n #

1 (
mÞn

e i
m@x1

m m1
m 2x2

m m2
m # D J , ~8!
s
m2

n 5
1

2 F12
2

N (
i ¹Act~n!

tanhH bS @x1
n m1

n 2x2
n m2

n #

1 (
mÞn

~2e i
m!@x1

m m1
m 2x2

m m2
m # D J ,

mn5
1

N (
i

e i
n tanhH b(

m
e i

m@x1
m m1

m 2x2
m m2

m #J ,

whereg[t recU ande i
m[2j i

m21.
The sum in the last equation of~8! can be seen as a

average over the random patterns~quenched disorder!. We
follow the standard approach of Ref.@2# Amit, Gutfreund,
and Sompolinsky~AGS! and assume that the network has
macroscopic overlap with one pattern~condensed patterns!
in the steady state (n51), and the remainingP21 overlaps
0-2
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areO(1/AN). Then, it is straightforward to see that bothm1
m

and m2
m are O(1/AN), and x1

m ,x2
m 512O(1/AN) for m

Þ1. Introducing new overlap variablesMm[x1
m m1

m

2x2
m m2

m , and using the previous reasoning, we have t
Mm;O(1/AN);mÞ1. In the thermodynamic limitMm

'mm ;mÞ1, and the small-order parametersMm can be
considered as independent random variables with mean
and variancear /P, wherer[(1/a)(mÞ1Mm2.

To perform the average over the random patterns and
tain the final mean-field equations, we followed the pro
dure described in Ref.@12#. This consists of splitting the sum
appearing in the argument of the tanh in Eq.~8! in three parts
~one for the condensed patternn51, one for the particular
noncondensed patternm5n, and a third for the rest of the
noncondensed patterns!, and performing a Taylor expansio
of the tanh around the small overlapM n. After neglecting
terms involving (M n)2, we obtain

mn5F 1

12b~12q!G 1

N (
i

e i
ne i

1

3tanhFbS M11 (
mÞ1,n

e i
me i

1MmD G ~9!

for a noncondensed patternn, with

q[
1

N (
i

tanh2H b (
m

e i
mMmJ ~10!

the spin-glass order parameter@2#. Then, we can computer
by evaluating the square of Eq.~9! and obtaining the well-
known relation betweenr andq, that is,

r 5
q

@12b~12q!#2 . ~11!

Moreover, for the condensed pattern 1 we easily obtain

x1
1 5

1

gm1
1 11

,

x2
1 5

1

gm2
1 11

,

m15
1

N (
i

tanhFbS M11 (
mÞ1

e i
me i

1MmD G , ~12!

m1
1 5

1

2 H 11
2

N (
i PAct~1!

tanhFbS M11 (
mÞ1

e i
mMmD G ,

m2
1 5

1

2 H 12
2

N (
i ¹Act~1!

tanhFbS M11 (
mÞ1

~2e i
m!MmD G .

Taking into account thate i
me i

1 is random and independent o
Mm, and thereforez[(1/Aar )(mÞ1e i

me i
1Mm is a Gaussian
06191
t

ro

b-
-

noise with zero mean and variance 1, the average 1/N( i
reduces to an average over the Gaussian noisez. Similarly,
e i

m is random and independent ofMm and z1

[(1/Aar )(mÞ1e i
mMm andz2[(1/Aar )(mÞ1(2e i

m)Mm are
also Gaussian noises with zero mean and variance 1. T
the sums appearing in the steady-state conditions form6

1 ,
Eq. ~12!, become averages over these Gaussian noises.

The resulting system of equations becomes:

u5E dz

A2p
e2z2/2 tanhFbS 4u

g2~12u2!14g14
1AarzD G ,

q5E dz

A2p
e2z2/2 tanh2FbS 4u

g2~12u2!14g14
1AarzD G ,

~13!

r 5
q

@12b~12q!#2 ,

whereu[2m1
1 21. To obtain Eq.~13! we used the steady

state conditions~12!, and the fact that in the steady state t
relationm1

1 1m2
1 51 holds. The system~13! is a direct ex-

tension of the AGS equations in the standard Hopfield mo
@2# and reduces to the AGS equations in the limit ofg→0,
that is, in the case of nondepressed or static synapses.

IV. RESULTS

The system~13! must be solved numerically for finite
temperature. In the limit ofT→0 it is easy to compute the
critical value ofP/N, namelyac , at which nontrivial ferro-
magnetic solutions~Mattis states! appear. ac gives the
maximum number of patterns that the system is a
to retrieve. For b→`, we use the standard
approximations *(dz/A2p)e2z2/2(12tanh2 b @az1b#)
'A(2/p)(1/ab)e2b2/2a2

and *(dz/A2p)e2z2/2 tanhb @az1b#)
'erf(b/A2a). Then, introducing a new variabley
5 f (u,g)/A2ar with f (u,g)[4u/g2(12u2)14g14, the
system~13! reduces to

yS A2a1
2

Ap
e2y2D 5 f @erf~y!,g#. ~14!

One can easily check thatu50 (y50) is a solution of Eq.
~14! for all a. The appearance of an additional nonzero
lution indicates the presence of a stable ferromagnetic s
The largesta at which these nonzero solutions appear d
fines the critical storage capacityac at T50 as a function of
the degree of synaptic depressiong. In Fig. 1 we plot the line
ac(g) ~solid line!. The figure predicts a decrease of the cri
cal storage capacity as the degree of depression is increa
For g→0 ~nondepressed synapses!, we recover the well-
known critical storage capacity for static synapses, tha
ac'0.138. For g→` our mean-field theory predictsac
→0.
0-3
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To check the validity of the mean-field results, we al
performed a series of numerical simulations forT50. We
used the numerical protocol introduced in Ref.@13#. This
consists of simulating a numberNr of retrieval experiments
for each value of the loading parametera. For a particulara,
each retrieval experiment has been performed with a dif
ent set of random patterns and starting in a pattern~namely
pattern 1! with its pixels disordered with probability 0.1. A
each time step, we updated in parallel all neurons accord
to the rulesi5Q(hi) ; i , whereQ(x) is the step function,
and the corresponding fraction of synaptic resourcesxi ac-
cording to Eq.~3!. After 200 iterations, we recorded the fin
state of the network and its overlap with pattern 1 for ea
particular retrieval experiment. Finally, we averaged tho
overlaps over theNr retrieval experiments. For example, Fi
2 shows the final averaged overlap^m1& as a function ofa
for the particular value ofg51 and four different network
sizes. Following Ref.@13#, we assume that retrieval of th

FIG. 1. Critical storage capacityac vs g5t recU in a neural
network with depressing synapses: mean-field result~solid line!,
numerical data points corresponding to the finite-size scaling an
sis of the Monte Carlo simulations~data points! ~cf. Fig. 3!.

FIG. 2. Retrieval of a pattern in a neural network with depre
ing synapses atT50. The figure shows the average overlap of t
final state of the network with the starting pattern as a function
the loading parametera and for different network sizes. Here, w
have considered, for illustrative purposes, the particular situa
for g51. The lines represent the average overlap obtained inNr

5150 retrieval experiments for each value ofa. The value^m1&
50.75 is used as a criterion to defineac .
06191
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original pattern is not effective when̂m1&,0.75. This crite-
rium gives the critical value ofa for effective retrieval, that
is ac(g), and for a particular network sizeN. To obtain the
value ac(g) for N→`, we fitted all ac(g) obtained for
different network sizes to a straight line as a function of 1N
and extrapolated to 1/N50 in Fig. 3. The resultingN→`
estimates for different values ofg are plotted on Fig. 1. For
g50, we obtainedac50.14660.002, which is in agreemen
with the estimate ofac reported in Refs.@2# and @13#.

In general, we observe that the value ofac(g) obtained in
numerical simulations is slightly higher than the mean-fie
prediction. This discrepancy must be attributed to seve
factors—the small network sizes used in our numerical st
ies; possible nonlinear finite size scaling effects at largerN;
and the criterium we use to defineac(g) for the destabiliza-
tion of memory pattern. In addition, our mean-field approa
uses the replica symmetric ansatz, which is well known
underestimate the exact value ofac for static synapses@2#.

V. CONCLUSION

We conclude that depressing synapses have a neg
effect on the storage capacity of attractor neural netwo
The effect is quite dramatic—the value ofac is reduced by a
factor of 10 forg'2. Sinceg is the ratio of recovery and
depression time constants, this means that the stored pat
can only be retrieved when recovery is fast compared
depression. This is in sharp contrast with experimental fi
ings wheret rec is of the order of 1 sec andU21 is of the
order of msec.

One must realize, that the classical definition of stora
capacity as used in this paper considers the asymptotic
bility of memory patterns as fixed points of the dynamic
We have shown previously@10# that attractor neural net
works with dynamical synapses display in addition to a f
romagnetic phase an oscillatory phase, where the netw
activity switches rapidly between stored memories. None
these memories are fixed points, but rather metastable st
This behavior is also observed at high memory loadi

y-

-

f

n

FIG. 3. Finite-size scaling of the Monte Carlo simulations of
neural network with depressing synapses for different values of
depressing factorg5t recU. The data points for each value ofg are
the critical storage capacity found for different network sizesN
5200, 400, 800, and 1600!. The solid lines correspond to the linea
fitting of the data points. Extrapolation of those lines toN→` gives
the data points represented in Fig. 1.
0-4
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Therefore, the disappearance of memories as fixed po
does not imply the disappearance of memory from these
works. The storage of memories as metastable states
require a different definition of storage capacity. How suc
new storage capacity depends on the dynamics of the
apses is an open question.
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