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Storage capacity of attractor neural networks with depressing synapses

Joaqum J. Torres* Lovorka Pantic; and Hilbert J. Kappéen
Linstitute “Carlos I” for Theoretical and Computational Physics and Department of Electromagnetism and Material Physics,
University of Granada, E-18071 Granada, Spain
’Department of Biophysics, University of Nijmegen, Geert Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
(Received 27 June 2002; revised manuscript received 24 September 2002; published 20 December 2002

We compute the capacity of a binary neural network with dynamic depressing synapses to store and retrieve
an infinite number of patterns. We use a biologically motivated model of synaptic depression and a standard
mean-field approach. We find that @&=0 the critical storage capacity decreases with the degree of the
depression. We confirm the validity of our main mean-field results with numerical simulations.
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[. INTRODUCTION observed not only in networks of binary neurons, but also of
more biologically plausible integrate-and-fire neur¢@8].

One of the interesting questions that arises in neural neffhese numerical results were confirmed analytically for bi-
work modeling is how biological processes in real neurons apary neurons by a mean-field analysis in the limit of a small
the cellular and subcellular level influence the network benumber of stored patterng,=P/N—0.
havior and its ability to process information. In this paper, we compute the storage capacity of an at-

In most neural network studies so far, the synaptic contractor neural network with dynamical depressing synapses
nection between neurons has been modeled as a constavien we store an infinite number of patterRs; aN. In the
strength[1,2], possibly subject to learning on a slow time- study presented in Ref9] the particular situation of strong
scale. However, recently it has been reported that synaptidepression and fast recovery has been analyzed. However, it
strength is a dynamic quantity that strongly depends on thé known that a large variety of values for the depression and
presynaptic neural activitj3,4]. Synaptic strength can de- recovery time constants are encountered in the brain. In this
crease(depression or increase(facilitation), depending on  paper, we show that only the ratio of these time constants
the type of synapsg3]. After learning, most synapses are affects the storage capacity and compute the dependence of
depressing with a typical time constant of 10-20 ms. Théhe storage capacity on this ratio. Our main conclusion, sup-
synaptic strength recovers on the order of seconds. The m¢orted by both analytical computations and Monte Carlo
lecular mechanism underlying this dynamic is the depletiorSimulations is that the critical storage capacity for the re-
of the neurotransmitter’s vesicles due to presynaptic neurdrieval of patterns as fixed points is strongly reduced by the
firing and their restoration on a larger time scplé. These degree of depression of the synapses, even at temperature
synapses are found throughout the cortex as well as in th&=0.

Hippocampug5-15].

There have been various studies of the effect of dynamic Il. THE MODEL
synapses on the information transfer in feed-forward neural
network behavior, such as filtering of redundant ndig Our starting point consists of a network Nfbinary neu-
extraction of temporal patterns for speech recognifish ~ ronss;=1, 0. Each neuron follows a probabilistic dynamic,
and robust coincidence detectif8i. which is given by

Only a few studies, for instance see Rdi8,10], have
focused on the role of dynamical synapses in recurrent neural Prolsi(t+1)=1}=3[1+tan{28h;(1)}], 1)

networks, and in particular on associative memfty. In

such networks, long-term storage of the memory patterns ighereh;==;w;;x;s; — ¢; is the local field associated to neu-
produced by adjusting the strength of the synapses accordingn i, 6, is the threshold for neuronto fire, and 8= 1/T

to the Hebb rule. With such static synapses the network dyrepresents the level of noise due to the stochastic synaptic
namics has fixed pointgattractorg corresponding to the activity. The first term ofh; is the total synaptic current ar-
stored memory patterr{d1]. The question one may ask is riving at neuroni with w;; representing the static synaptic
how the retrieval properties and the fixed points of theconnection strength or weights between neuroasdi and
Hopfield network are affected by dynamical synapses. Rex; the depression variablel0]. The static weights are de-

cently, it has been shown numerically that synaptic depresfined according to the standard covariance rule, that is,
sion allows for fast switching among stored patterns by re-

ducing the stability of such attractors. These results are 1 P
O =Ny 2, (& DE -, @
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time and models the dynamic properties of the syn@peg
and is a simplification of the original model by Rpd] in the
limit of 7;,=0,

1—xi(t)

rec

Xi(t+ 1):Xi(t)+

_UXi(t)Si(t) Vi=1,...N.
)

For .= 0 we recover the static synapse£1).

In the following, we shall consider random patterns with
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These sums extend over the units that are active or inactive
in the patterny, respectively. In a similar way, we define the
mean activity of the network for the units that are active and
inactive in patterny, that is mi=(1/Nf)Z;_acqyS; and

M2 =[1/N(1-f)]Z; acynSj- Then, the overlap of the net-
work activity with a stored patterm becomes

1
R 3 G 9

average activity £&)=f=1/2. In order to recover the stan-

dard static Hopfield model with, =0 in the{+1, —1} code,
we have to choose the neuron threshold in th@®} code
equal to

1
(=77~ - s
0= N1 > > H-DE-H. @
For each stored patten we define the average &f for
the active and inactive units in the pattern, thatx

E(lle)EjEACt(V)Xj , and XEE[I/N(l_f )]Ej¢ACt(V)Xj .

X5 (t+1)=x%(t)+

X" (t+1)=x"(t)+

mi(t+1)=%_ >

and the corresponding local fields

P
hFZl (&—f)[xIm} —x"m”]. (6)
Ill. MEAN-FIELD ANALYSIS

From Egs.(1) and (3) and within a standard mean-field
approximation, the network dynamics is driven by the
coupled map

v

—+(U—Uxi(t)mi(t),
-

rec

x” (1) , ,
T——Ux,(t)m,(t),

rec

1+tan"{l3<[Xi(t)m’i(t)—xv(t)my(t)]+2 (251”—1)[X¢(t)m’+‘(t)—X"(t)m"(t)])H, (7)
nFEV

ieAct(v)
14 1 14 14 14 14
mZ(t+1) =g > | 1-tani Bl [XL(OML()—x"(Hm” ()] = 2 (2&— DX (HmA (D) —x*(Om* (D] ] ¢ |,
i¢Act(v) nFV
1
m”(t+1)=Nz (2&'-1) 1+tanh[/32 (25{‘—1)[x¢(t)mﬁ(t)—x“(t)m“(t)]]}.
i M
|
The last three equations ¢7) are not independent and are 1 2
related by Eq(5). In the thermodynamic limitl|— ), the mi=311-3 > tam‘* B([ximi—x”_mi]
fixed point equations for the coupled dynamics of neurons P& ACt(v)

and synapse§&/) are given as

, 1

X! =
T oymi+1
, 1

X =T
T oym’+1

14 1 2 14 14 14 v
m; =51+ > tanh Bl [X\m’ —x"m"]
i cACt(»)

8

+> e#[x’im’i—xﬁm’i])},
nFV

+ (—fi")[x’imﬁ—x“m"])],
nFV

1
mvzﬁz €’ tanr{ B, e'[xFmt —x# m"]] ,

[ “

wherey=r, .U ande/'=2¢&"—1.

The sum in the last equation @8) can be seen as an
average over the random patterfumenched disorderWe
follow the standard approach of R¢R] Amit, Gutfreund,
and SompolinskfAGS) and assume that the network has a
macroscopic overlap with one pattefcondensed patterns
in the steady statev=1), and the remainin® — 1 overlaps
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areO(1/y/N). Then, it is straightforward to see that battf noise with zero mean and variance 1, the average&xl/
and m* are 0(1/\/N), and x* ,X"i:]_—O(]_/\/N) for u reduces to an average over the Gaussian roi§milarly,

#1. Introducing new overlap variableM#“=x“m* € is random and independent ofM* and z
—x“m*, and using the previous reasoning, we have that (1Nar)s,.1e'M* andz,=(11ar)= . ,(—€)M* are
M“~O(1YN)Yu#1. In the thermodynamic limitM#  @lso Gaussian noises with zero mean and variance 1. Then,
~m* Yu#1, and the small-order parametevs* can be the sums appearing in the steady-state conditiongfbr
considered as independent random variables with mean zeFsl- (12), become averages over these Gaussian noises.

and variancexr/P, wherer=(1/a) .M n2 The resulting system of equations becomes:
To perform the average over the random patterns and ob-
tain the final mean-field equations, we followed the proce- dz 5 4u
dure described in Ref12]. This consists of splitting the sum u= f e’ ’Ztank{ﬁ( 72 + \/JZ) :
- vy(1—-u?)+4y+4

appearing in the argument of the tanh in E&).in three parts
(one for the condensed patteris=1, one for the particular

noncondensed pattega= v, and a third for the rest of the dz ) au
noncondensed pattepngnd performing a Taylor expansion 0= f \/——e_z tani? B( 21— 14,14 + \/Ez) ,
of the tanh around the small overldp”. After neglecting 27 Y Y
terms involving (M")2, we obtain (13
1 1 q
v — = vl r=—o————=7>,
m {1—3(1—(1)}1\1 2 el [1-B(1-q)T°
1 .
1 w1 whereu=2m; —1. To obtain Eq(13) we used the steady-
xtan?‘{ﬁ M +M;ly € € MM) ©  state conditiong12), and the fact that in the steady state the

relation ml+ +m! =1 holds. The systenil3) is a direct ex-
for a noncondensed pattern with tension of the AGS equations in the standard Hopfield model
[2] and reduces to the AGS equations in the limityef: 0,

o= %2 tanr?l,B 2 e{‘M“] (10 that is, in the case of nondepressed or static synapses.
i ®
IV. RESULTS
the spin-glass order paramef{@i. Then, we can compute . o
by evaluating the square of E¢P) and obtaining the well- The system(13) must be solved numerically for finite
known relation between andg, that is, temperature. In the limit oT —0 it is easy to compute the
critical value ofP/N, namelya, at which nontrivial ferro-
q magnetic solutions(Mattis states appear. «. gives the
r= m (11 maximum number of patterns that the system is able
to retrieve. For B—, we use the standard
Moreover, for the condensed pattern 1 we easily obtain ~ approximations [(dz/\2m)e (1 tank? B[az+b))
~ @7 (1/aB)e 2% and [(dZ\2m)e ZtanhB[az+b])
.1 ~erf(b/\/2a). Then, introducing a new variabley
Xe= ymt+1° =f(u,y)/V2ar with f(u,y)=4u/y*(1—u?)+4y+4, the
system(13) reduces to
xt =1;, 2
ym-+1 y( V2a+ —eyz) = ferf(y), . (14)
N

) (12) One can easily check that=0 (y=0) is a solution of Eq.
(14) for all a. The appearance of an additional nonzero so-
lution indicates the presence of a stable ferromagnetic state.
The largesta at which these nonzero solutions appear de-
fines the critical storage capacity, at T=0 as a function of

the degree of synaptic depressiarin Fig. 1 we plot the line
ac(7y) (solid ling). The figure predicts a decrease of the criti-
cal storage capacity as the degree of depression is increased.
For y—0 (nondepressed synapgesve recover the well-
known critical storage capacity for static synapses, that is
Taking into account tha¢*e! is random and independent of a.~0.138. Fory—o our mean-field theory predicts,

M#, and therefore=(1/\ar)s . €'e/M* is a Gaussian —O0.

m1=%2 tanr{ﬁ

M1+ ;1 ei”“eilM”)

Mi+ > E{U'MM)
n#l

ieAct(l)

1 2
1_Z =
m+—2[1+N E tan}‘{ﬁ

1 2
mfzz{l—ﬁ > tan}{ﬂ .

ieAct(l)

M+ > (—ei“)M")
pFl
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FIG. 3. Finite-size scaling of the Monte Carlo simulations of a
FIG. 1. Critical storage capacityt; VS y=r7cU in @ neural  peyral network with depressing synapses for different values of the
network with depressing synapses: mean-field re@dtid line),  gepressing factoy=7,,.U. The data points for each value pfare
numerical data points corresponding to the finite-size scaling analythe critical storage capacity found for different network sizhs (
sis of the Monte Carlo simulatior{glata points (cf. Fig. 3. =200, 400, 800, and 1600The solid lines correspond to the linear
fitting of the data points. Extrapolation of those lines\te» > gives
To check the validity of the mean-field results, we alsothe data points represented in Fig. 1.
performed a series of numerical simulations for0. We
used the numerical protocol introduced in REE3]. This  original pattern is not effective wheim®)<0.75. This crite-
consists of simulating a numbé\;, of retrieval experiments rium gives the critical value of for effective retrieval, that
for each value of the loading parameterFor a particulaw,  is a.(y), and for a particular network siz¢. To obtain the
each retrieval experiment has been performed with a differvalue a.(y) for N—«, we fitted all a.(y) obtained for
ent set of random patterns and starting in a patteemely  different network sizes to a straight line as a function ®f 1/
pattern 1 with its pixels disordered with probability 0.1. At and extrapolated to W=0 in Fig. 3. The resultingN— o
each time step, we updated in parallel all neurons accordingstimates for different values ofare plotted on Fig. 1. For
to the rules;=0(h;) Vi, where®(x) is the step function, =0, we obtainedr,=0.146+0.002, which is in agreement
and the corresponding fraction of synaptic resourgeac-  with the estimate ofy,, reported in Refs[2] and[13].
cording to Eq(3). After 200 iterations, we recorded the final  |n general, we observe that the valueaq{ y) obtained in
state of the network and its overlap with pattern 1 for eachumerical simulations is slightly higher than the mean-field
particular retrieval experiment. Finally, we averaged thoserediction. This discrepancy must be attributed to several
overlaps over th&, retrieval experiments. For example, Fig. factors—the small network sizes used in our numerical stud-
2 shows the final averaged overléam') as a function ofa jes; possible nonlinear finite size scaling effects at lahger
for the particular value ofy=1 and four different network and the criterium we use to defing(y) for the destabiliza-
sizes. Following Ref[13], we assume that retrieval of the tion of memory pattern. In addition, our mean-field approach
uses the replica symmetric ansatz, which is well known to

1 T . : underestimate the exact value @f for static synapseR2].
075 el V. CONCLUSION
We conclude that depressing synapses have a negative
A 05 L effect on the storage capacity of attractor neural networks.
g The effect is quite dramatic—the value @f is reduced by a
factor of 10 for y=~2. Sincey is the ratio of recovery and
025 L No1600 depression time constants, this means that the stored patterns
can only be retrieved when recovery is fast compared to
depression. This is in sharp contrast with experimental find-
0 - L - ings wherer,q. is of the order of 1 sec and ! is of the
0.05 0.075 0.1 0.125 0.15 order of msec.

o One must realize, that the classical definition of storage

FIG. 2. Retrieval of a pattern in a neural network with depress-CaPacity as used in this paper considers the asymptotic sta-

ing synapses af=0. The figure shows the average overlap of the Pility of memory patterns as fixed points of the dynamics.
final state of the network with the starting pattern as a function ofVe have shown previouslj10] that attractor neural net-

the loading parametex and for different network sizes. Here, we WOrks with dynamical synapses display in addition to a fer-
have considered, for illustrative purposes, the particular situatiofomagnetic phase an oscillatory phase, where the network
for y=1. The lines represent the average overlap obtained,in activity switches rapidly between stored memories. None of
=150 retrieval experiments for each value @f The value(m!)  these memories are fixed points, but rather metastable states.
=0.75 is used as a criterion to defing. This behavior is also observed at high memory loading.
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